STATE OF MONTANA

Thomas L. Judge, Governor

BULLETIN 91

December 1973

BUREAU OF MINES AND GEOLOGY

S. L. Groff, Director

QUALITY AND RESERVES OF STRIPPABLE COAL, SELECTED DEPOSITS, SOUTHEASTERN MONTANA

by Robert E. Matson and John W. Blumer

Montana Bureau of Mines and Geology Analytical Data by Laurence A. Wegelin feet thick. These beds can be correlated with beds shown on a log of an oil well in the NW¼ sec. 12, T. 6 S., R. 42 E. (Pl. 33 and 34).

COAL QUALITY

Six core samples of the Knobloch coal bed were analyzed in the Montana Bureau of Mines and Geology analytical laboratory for proximate analysis, forms of sulfur, and heating value (Table 34), and major ash constituents (Table 35).

COAL RESERVES

All strippable reserves in the Poker Jim Creek-O'Dell Creek coal deposit are in the Knobloch coal bed (Table 33). The reserves total 938,070,000 tons, comprising 564,780,000 tons_shown on Plate 11B and 373,290,000 tons shown on Plate 11A.

OTTER CREEK COAL DEPOSIT

LOCATION

The Otter Creek coal deposit (Pl. 12) is in T. 4 and 5 S., R. 45 and 46 E., about 12 miles south of Ashland by road. The deposit is limited on the west, south, and east by excessive overburden, and on the north it adjoins the Ashland (Pl. 13A and B) and the Poker Jim Creek-O'Dell Creek (Pl. 11A and B) coal deposits. To the southeast it borders the Diamond Butte (Pl. 19) and Goodspeed Butte (Pl. 20) coal deposits. It overlaps the Yager Butte (Pl. 23A and B) coal deposit to the east.

FIELD WORK AND MAP PREPARATION

The evaluation of strippable coal in the Otter Creek area was begun in 1967 when four holes were drilled on state-owned land (Matson, Dahl, and Blumer, 1968). In 1970 additional holes were drilled to extend the coal reserves and to gather data for structural control to accurately determine the strippable reserves. Gamma logs of several oil wells were helpful in developing the structural picture, as well as for compiling the overburden maps. The geology in the Otter Creek area was mapped during the summer of 1970 on black-and-white aerial photos and during the winter of 1972 on color aerial photos.

PREVIOUS GEOLOGIC WORK

The Otter Creek area was included in a report on the Birney-Broadus area (Warren, 1959); in a report on strippable coal (Ayler, Smith, and Deutman, 1969); and in a report on strippable coal deposits on state lands (Matson, Dahl, and Blumer, 1968).

LAND OWNERSHIP

The surface ownership in the Otter Creek area is divided between private individuals, the State of Montana, and the Federal Government. The State of Montana owns the surface in sec. 16 and 36 of each township, and the Federal Government has control of a few small tracts in the east half of T. 4 S., R. 45 E., and the land within the Custer National Forest. The rest of the surface is privately owned.

The ownership of the coal on state sections remains with the state; that on public lands with the Federal Government. The Otter Creek area is within the land grant to Burlington Northern, Inc., which owns coal on the odd-numbered sections outside the Custer National Forest. The railroad has conveyed most of the surface but has kept the coal rights from its original land grant. Some coal along the Otter Creek valley is privately owned.

SURFACE FEATURES AND LAND USE

The principal surface feature in the area, Otter Creek, is a northward-flowing tributary, which joins the Tongue River at Ashland. Except in unusually dry years, it contains water all year, but it also has periods of no flow each year. The major tributaries of Otter Creek flow only during periods of heavy precipitation and spring runoff. Tributaries entering Otter Creek from the east are long, have gentle gradients, and occupy wide valleys. They head near the top of the divide between Otter Creek and Pumpkin Creek to the east. Tributaries entering Otter Creek from the west are shorter and steeper. Otter Creek has deeply intrenched meanders; its present flood plain is about a half mile wide. Clinker formed by the burning of the underlying Knobloch coal bed borders the flood plain and forms nearly vertical clinker banks in places. A broad terrace, 100 to 150 feet above the present level of Otter Creek, has been deeply dissected in places by the tributaries of Otter Creek.

The principal land use in the area is livestock grazing, but grain and hay are raised in fields and meadows along Otter Creek and its tributaries.

GEOLOGIC STRUCTURE

Elevations obtained from drill data on the top of the Knobloch coal bed clearly show an anticline in the north half of T. 5 S., R. 45 E. At its crest, the strata have been uplifted about 80 feet above their position in the southernmost part of T. 4 S., R. 45 E., and in the northern part of T. 5 S., R. 45 E. The Knobloch bed is exposed about 30 to 40 feet above stream level near the crest of the anti-

Table 36.-Reserves, overburden, overburden ratio, acres, and tons/acre, Otter Creek coal deposit.

KNOBLOCH BED

Thickness of overburden, ft.		dicated reserves, million tons	i	erburden and nterburden, illion cu. yd.		urden rat yards/to	•	Acres	Tons/acre
0 to 50		241.77		275.52		1.13		3,686.4	65,591.4
50 to 100		492.21		953.30		1.93		7,091.2	69,413.3
100 to 150		535.42		1,582.42		2.95		7,352.6	72,820.5
150 to 200		487.51		1,454.34		2.98		4,870.4	100,104.7
200 to 250		318.64		1,141.97		3.58		2,790.4	114,207.9
	Total	2,075.55	Total	5,407.55	Average	2.60	Total	25,791.0	Average 80,475.7

cline (Warren, 1959, p. 566). To the north in sec. 16, T. 4 S., R. 45 E., the Knobloch coal bed crops out near stream level, and to the south, in the south half of sec. 26, T. 5 S., R. 45 E., it dips below stream level. Although the information is inconclusive, because of scarcity of drill data, the changes in thickness of the Knobloch coal bed suggest that the anticline, as a structural feature, controlled to some extent the deposition of the Knobloch bed (Pl. 34, Section OC'-A'). The drill holes do show that the Knobloch bed thins and begins to split on the northern flank of the anticline, and the partings thicken on the southern flank, where the lowest bench of the Knobloch is either thin or missing.

COAL BEDS

The Knobloch coal bed contains the only strippable reserves in the Otter Creek coal deposit. Other coal beds include the King bed, which is 70 to 160 feet above the Knobloch bed in T. 5 S., R. 45 E., and several higher beds, which are exposed along the steep slopes of the ridges on both sides of Otter Creek.

The thickest coal section in the Otter Creek deposit was 66 feet as measured in drill hole SH-7054, sec. 2, T. 4 S., R. 45 E. Southward, the Knobloch bed thins gradually; in drill hole SS-6, sec. 16, T. 4 S., R. 45 E., it has a

thickness of 47 feet. The split begins to develop in the Knobloch coal bed in the southern part of T. 4 S., R. 45 E., as shown in a log of an oil well in sec. 24 (Pl. 34, Section OC'-A'), where the upper bench is 46 feet thick and the lower bench is 19 feet thick. Both benches thin southward, as shown by the isopachs (Pl. 12). In the northern part of T. 5 S., R. 45 E., the upper bench of the Knobloch splits again and a bench called the middle bench appears. In about this same place, the lower bench thins and has not been traced farther south.

COAL QUALITY

Core samples from the Otter Creek coal field were analyzed by the Montana Bureau of Mines and Geology analytical laboratory, except for one sample taken in 1967 from drill hole SS-5, which was analyzed by the U.S. Bureau of Mines, Pittsburgh Coal Research Center.

Proximate analysis, forms of sulfur, and heating value are shown in Table 37, and major ash constituents are shown in Table 38.

COAL RESERVES

Strippable reserves in the Knobloch coal bed in the Otter Creek coal field total 2,075,550,000 tons (Table 36).

Table 37.-Proximate analysis, forms of sulfur, and heating value, Otter Creek coal deposit.

						STRI	PPAE	LE	COA	AL, SC	UT	HEA	STE	RN MO	ONT!	\NA	·					
:	Heating value (Btu)	8515 11776 17731	11742	12595 8457	11901 12583	8011 11345	11726	7961	12240	8891 11786 12487	8261	12171	11364 12180	7831 11407 12058	830 163	282	11978 12638	8258	12332	11908 12554	8576	12613
	Organic	206	.197	295	246 260	.898	1.498 .097 .153	1083	167	300	.162	.221 .238	154 154 165	. 275 . 291	181	273	222	261	060	265	111	.163
Form of sulfur. %	Pyritic	00.0 110.0 110.0	00.00	210	022 024 4	4.29 6.083	042 066 066	0.00 0.40 0.40 0.40	0.00 0.71	0000 333 883	.045	0662 0662	000 044 147	0000 0447	000	0.5	0.00 222 23 23	.016	024	.265 265	.016	.023
Form	Sulfate	<u> </u>	88	88	000	126	021 033 331	0.00 8.00 8.00 8.00 8.00 8.00		.033 .033 .033	.018	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	999 999	000 000 000	000	9 9 9 9	<u>6</u> 6	000	888	888	016	.023
	Sulfur	218	205 286 286	307	283	5.320 7.534	5.863 .160 .252	178	274	388	225	6000 8000 8000	.198 213	232 933 938	.181	273	245 258	277	14'c	338	.143	210
	Ash	5.423	4.844	3.849	5.417	10.624 15.046	3.871 6.086	5.167	000.7	5.617	5.224	7.146	6.703	3.704 5.395	5.019	3.614	5.226	4.277	2 413	5.145	3.855)))
ate, %	carbon	37.616 52.021 56.239	36.001 50.330	53.986 38.987	54.864 58.007	33.961	33.990 5.33.990 5.443 5.443	36.906 36.774 52.23	56.539	\$4.002 \$7.215	2.57	7.99	62.4	34,151 49,747 52,584		voc	55.748 58.822	35.949	53.684	43.529	39.185	7.62
Proximate,	volatue matter	29.270 40.479 43.761	30.685 42.898	46.014 28.224	39.719 41.993	26.025 36.857	25.739 40.471	28.268 40.268	43.461	30.464 40.382 42.785	35.300	48.290 52.007	42.514 45.514 45.568	30.795 44.858 47.416	8.55	200	39.026 41.178	O.A	بموساز	\$3.566 \$6.471	28.810	42.371
	Moisture	27.690	28.470	28.940		29.390	36.400	29.790	000	74.260	26.900	002.00	086.42	31.350	28.590	30.850		28.760	31 730	3	28.150	
9	rorm of 1/	₹¤∪	PΑ	O«	æŲ	≺ ∞() ∢ æ(• ن	∢m∪	٧í	≖ ∪•	€¤∪	⋖⋒⋃	≺ ∞	O4	жU	₹¤	•∪≪	(mU	<∞	iO
7	Seq.	Knobloch				Knobłoch					Knobloch				Knobloch			Knobloch			Knobloch	
4	number	233	;	234	235	330	007	677	230	231		246	247	248		250	251		253	254		255
4	sampled	178 to 187 ft.	187 to	197 ft.	197 to 199 ft.	60 to	106 to	115 11.	124 ft.	124 to 127 ft.	ļ	177 to 185 ft.	185 to 193 ft.	193 to 197 ft.	116 to	126 ft.	126 to 135 ft.	106 to	116 ft.	116 to 126 ft.	112 to	122 ft.
ded in	and location	SH-7044 5S R46E S30 DDAD				SH-7045 SS R46E S20					SH-7049	SS R46E S2 DCDB			SH-7051 4S R46E S33	CBBA		SH-7052	BDAC		SH-7053 4S R45F S4	AAAA

SS-5 4S R45E S36 DADD		SH-7060 4S R46E S6 DDAC	SH-7055 4S R45E S6 DDBA			SH-7054 .4S R45E S2 DBDC						4S R4SE S4 AAAA	SH-7053
56 to 77 ft	149 to 153 ft.	141 to 149 ft.	216 to 218 ft.	100 to 106 ft.	94 to 100 ft.	84 to 94 ft.	165 to 171 ft.	156 to 165 ft.	148 to 156 ft.	140 to 148 ft.	132 to 140 ft.	122 to 132 ft.	
1-73319	272	271	265	264	263	262	261	260	259	258	257	256	•
Knobloch		Knobłoch	Knobloch			Knobloch							Knobloch
Свъ	C#;	> C & >	C⇔≯	O # :	≽Ω#;	≽С⊞≯	СВ	> C ₩ ;	>∩₩;	- Ω Β;	>∩#;	⊁ C ⊞ ;	→
26.6	00.7	29.190	26.320		23 740	25,490 23,960		27.140	26 720	27.010	27.290	26.670	28 530
29.6 40.3 43.4	42.523 44.608	29.104 41.102 43.782	29.855 40.519 44.361	43.080 45.408	42.811 44.998 32.853	30,717 41,225 43,895 32,554	39.509 43.283	39.478 42.998 28.786	41,432 44,439 28,930	41.361 44.189 30.241	40.770 42.480 30.073	43.241 45.635 29.897	30.904
38.6 52.6 56.6	52.804 55.392	37.372 52.778 56.218	37.444 50.820 55.639	51.794 54.592	52.330 55.002	39.261 52.693 56.105 39.792	51.772 56.717	52.337 57.002 37.721	51.801 55.561 38.353	52.239 55.811 37.810	55.205 57.520 37.983	51.514 54.365 40.482	36817
5.2 7.1	4.673	4.334 6.120	6.381 8.661	5.126	4.859	4.532 6.082 3.695	8.719	8.185 6.353	6.767 5.998	6.401	4.025	5,245	3.748
.200 .300 .300	.182	.120 .169	.154 .209 .229	.195 .206	.221 .233	.142 .191 .203	.533 .584	.239 .260 .388	.208 .223	.228 .244	.175 .183	.208 .220	.149
	.000	00000	.000.	0000	000	.034 .034 .035	.022 .024	.000 000 016	0000	0000		0022 023	016
	.034	0000	.024 .033 .036	.022	000		.033	.036 .036 .024	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	065 040	.022 .023 .047	630. 630. 630. 630.	.047
	.148	.120 .169	.130 .176 .193	.173	.188 .198	.157	.478 .523	.207 .225 .348	.153 .164 .151	.163 .174 .112	.154 .160 .119	.121 .127 .113	.086
8740 11910 12810	12086 12678	8454 11939 12717 8373	8558 11615 12717	12197 12856	12249 12875 9301	8962 12028 12807 9314	11661 12774	11659 12698 8496	11912 12776 8543	12134 12964 8694	12017 12521 8823	12171 12845 8812	8699

Table 38.-Major ash constituents, Otter Creek coal deposit.

	Total	90.5	97.3	94.9	96.4	99.5	96.7	9.96	96.3	93.9	5.56	95.9
	TiO ₂	9	.	7.	9.	<i>L</i> :	ve,	æί	r.	,6	œί	r.
li	sO ₃	7.8	10.3	10.5	8.3	7.2	10.8	6.3	5.6	7.1	4.9	5.9
	SiO ₂	27.9	11.0	32.2	28.6	30.3	29.0	31.0	42.2	25.7	39.8	30.2
88.	P205	F :	т:	λ	4	t:	1.2	4	4	7	L	r i
Constituent	Na ₂ O	7.5	2.7	5.3	9.5	9.4	6.8	9.4	5.9	5.3	6.9	11.0
o	MgO	3.5	œί	7.7	3.7	3.7	3.1	3.9	2.6	5.3	2.5	1.9
	K20	٠ċ	Ŋ	w;	ωj	e;	4	4	1.0	7	c i	7
	Fe ₂ O ₃	5.3	61.5	4.9	5.0	5.0	4.7	3.6	3.2	3.4	2.7	3.8
	CaO	20.5	5.4	20.4	23.8	24.1	20.1	20.6	12.9	24.5	15.0	22.5
	AJ ₂ O ₃	16.2	6.4	12.4	16.4	18.1	18.1	20.4	18.1	21.5	22.0	19.6
اومن	ped	Knobloch	Knobloch		Knobloch	Knobloch	Knobloch	Knobloch		Knobloch	Knobloch	Knobloch
, t	sample	233-235	238	229-231	246-248	250-251	253-254	255-259	260-261	262-264	265	271-272
Control of the contro	sampled	178 to 199 ft.	60 to 65 ft.	106 to 127 ft.	177 to 197 ft.	116 to 135 ft.	106 to 126 ft.	112 to 156 ft.	156 to 171 ft.	84 to 106 ft.	216 to 218 ft.	141 to 153 ft.
1 H	Drill note and location	SH-7044 SS 46E S30 DDAD	SH-7045 5S 46E S20 CBBD		SH-7049 5S 46E S2 DCDB	SH-7051 4S 46E S33 CBBA	SH-7052 SS 45E S27 BDAC	SH-7053 4S 45E S4 AAAA		SH-7054 4S 45E S2 DBDC	SH-7055 4S 45E S6 DDBA	SH-7060 4S 46E S6 DDAC

Table 1. Commonly mapped coal seams in the Montana portion of the Powder river Basin.

Roland

Smith

Anderson

Dietz

Canyon (Monarch)

Cook

Otter

Wall (Carney)

Pawnee

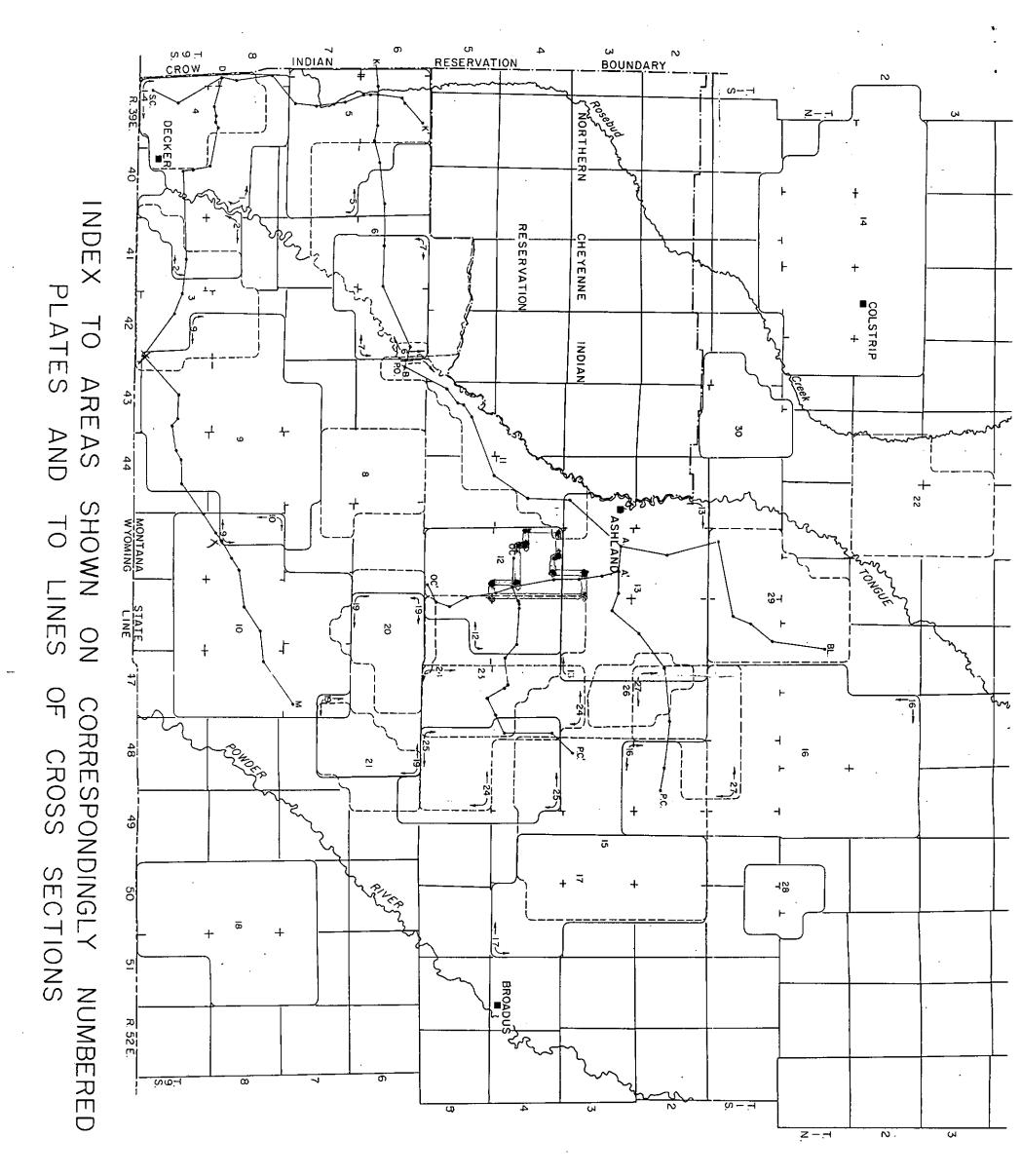
Brewster-Arnold

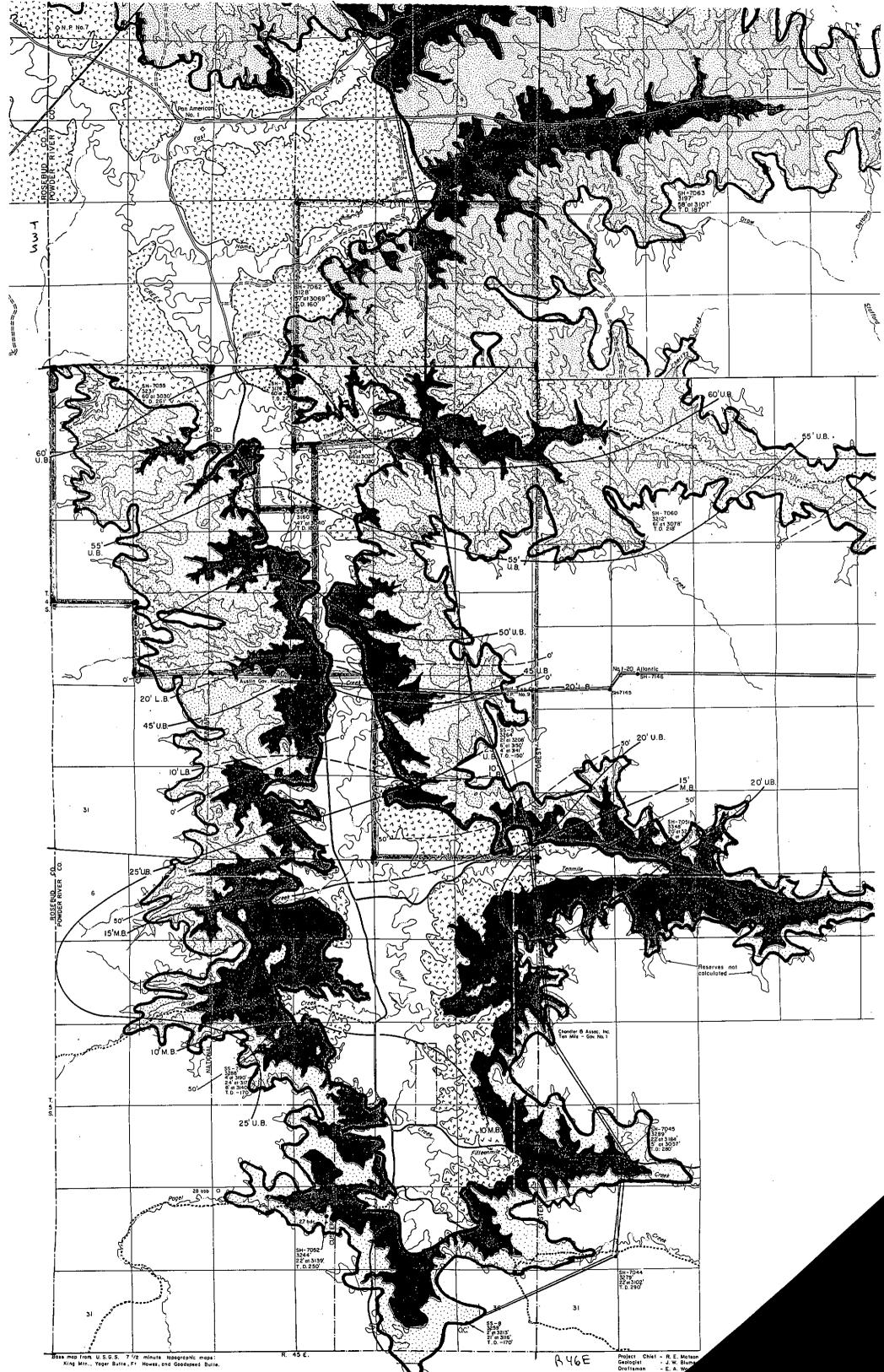
Sawyer

Knobloch

Nance

Rosebud


McKay


Flowers-Goodale

Terret

Robinson

(Matson, and others, 1973; Law and others, 1979)

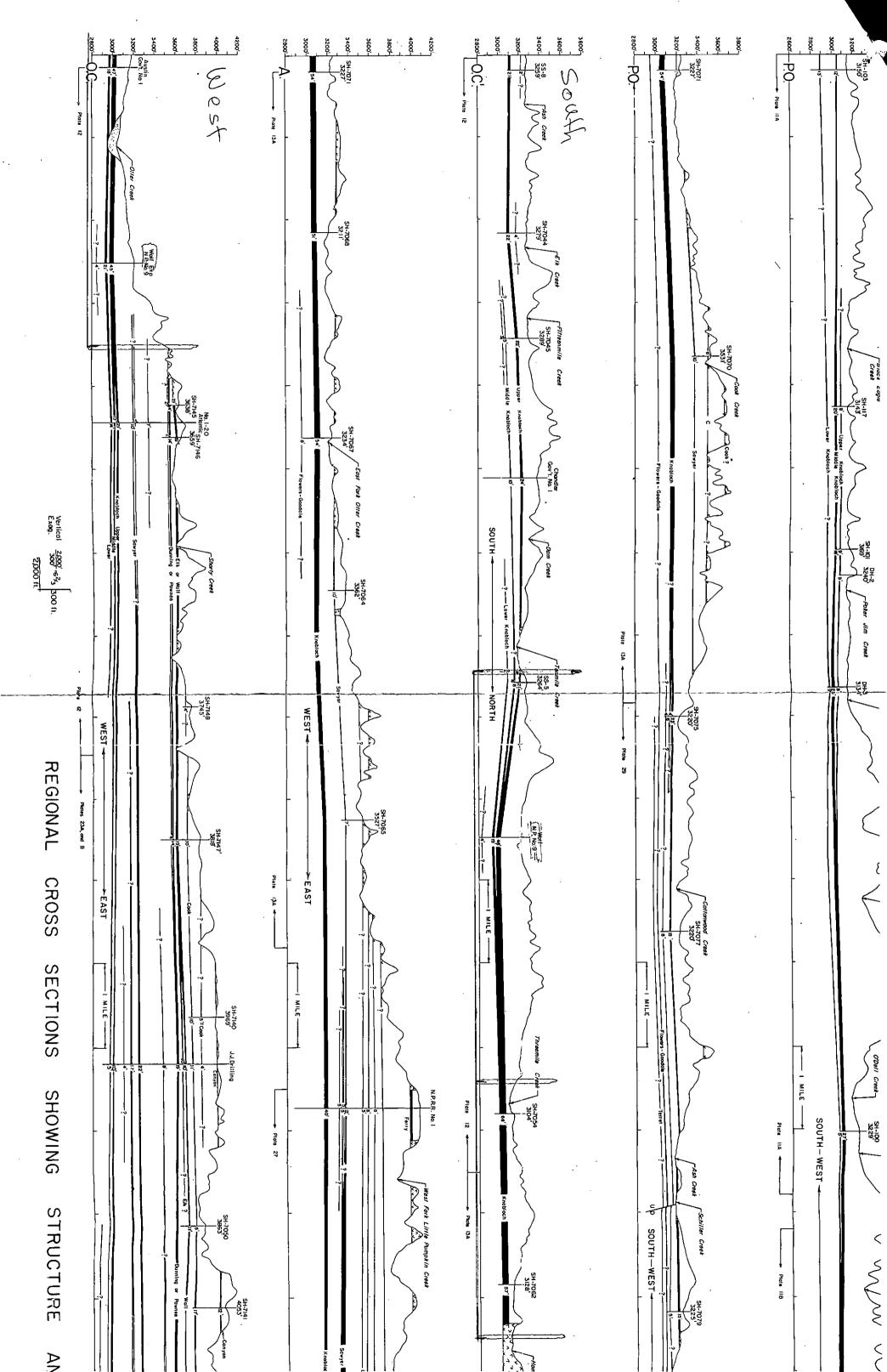
OTTER CREEK COAL DEPOSIT
SHOWING
STRIPPABLE RESERVES IN THE KNOBLOCH COAL BED,
POWDER RIVER COUNTY, MONTANA

SCALE

DATUM IS MEAN SEA LEVEL

EXPLANATION

Knobloch	coal bed	•	M, B, M G drill hole
Clinker		SH-7044	hole designation
Ø-50°	of overburden	3279'	allitude at lop of callar
50'+100'	tt d	22° at 3102°	allitude at top of 22' of coa
100'-150'		T D 290'	total depth of drill hole
(50'-200'	4 11	Ó Austin Gov. No. I	Oil well drill hole
200-250		O 28 bbb	Water well drill hole


QC'Line of cross section (plate 34) -- P.C.

30'U.B. Isopach of Upper or combined Benches

15'M.B. Isopach of Middle Bench
20'L.B. Isopach of Lower Bench

50' Isopach of parting between Upper B Middle Benches

50' Isopach of parting between Upper & Lower Benches

